
LANGUAGE IN INDIA
Strength for Today and Bright Hope for Tomorrow

Volume 6 : 8 August 2006

Managing Editor: M. S. Thirumalai, Ph.D.
Editors: B. Mallikarjun, Ph.D.

Sam Mohanlal, Ph.D.
B. A. Sharada, Ph.D.

A. R. Fatihi, Ph.D.
Lakhan Gusain, Ph.D.
K. Karunakaran, Ph.D.

Jennifer Marie Bayer, Ph.D.

PARSING IN TAMIL –
PRESENT STATE OF ART

S. Rajendran, Ph.D.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 1

 PARSING IN TAMIL: PRESENT STATE OF ART

S. Rajendran, Ph.D.

Parsing is actually related to the automatic analysis of texts according to a

grammar. Technically, it is used to refer to practice of assigning syntactic
structure to a text. It is usually performed after basic morphosyntactic categories
have been identified in a text. Based on different grammars parsing brings these
morphosyntactic categories into higher-level syntactic relationships with one
another. The survey of the state of art of parsing in Tamil reflects upon the global
scenario. More or less the trends of the global arena in natural language
processing are very much represented in Tamil too.

Overview of the Global Scenario

We try to understand larger textual units by combining our understanding
of smaller ones. The linguistic theory aims to show how these larger units of
meaning arise out of the combination of the smaller ones. This is modeled by
means of a grammar. Computational linguistics then tries to implement this
process in an efficient way. Traditionally the task is to subdivide into syntax and
semantics; syntax describes how the different formal elements of a textual unit,
most often the sentence, can be combined; semantics describes how the
interpretation is calculated. In most language technology applications the
encoded linguistic knowledge, i.e., the grammar, is separated from the
processing components. The grammar consists of a lexicon, and rules that
syntactically and semantically combine words and phrases into larger phrases
and sentences.

A variety of representation languages have been developed for the

encoding of linguistic knowledge. Some of these languages are more geared
towards conformity with formal linguistic theories, others are designed to facilitate
certain processing models or specialized applications. Several language
technology products on the market today employ annotated phrase-structure
grammars, grammars with several hundreds or thousands of rules describing
different phrase types. Each of these rules is annotated by features, and
sometimes also by expressions, in a programming language.

When such grammars reach a certain size they become difficult to

maintain, to extend, and to reuse. The resulting systems might be sufficiently
efficient for some applications but they lack the speed of processing needed for
interactive systems (such as applications involving spoken input) or systems that
have to process large volumes of texts (as in machine translation).

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 2

In current research, a certain polarization has taken place. Very simple
grammar models are employed, e.g., different kinds of finite-state grammars that
support highly efficient processing. Some approaches do away with grammars
altogether and use statistical methods to find basic linguistic patterns. On the
other end of the scale, we find a variety of powerful linguistically sophisticated
representation formalisms that facilitate grammar engineering. The most
prevalent family of grammar formalisms currently used in computational
linguistics is constraint based.

Morphological Analysis in Tamil

Tamil is a Dravidian language. It is a verb final, relatively free-word order
and morphologically rich language. Like other Dravidian languages, Tamil is
agglutinative. Computationally, each root word can take a few thousand inflected
word-forms, out of which only a few hundred will exist in a typical corpus.
Subject-verb argument is required for the grammaticality of a Tamil sentence.
Tamil allows subject and object drop as well as verb less sentences. In addition,
the subject of a sentence or a clause can be a possessive Noun Phrase (NP) or
an NP in nominative or dative case. As Tamil is an agglutinative language, each
root word can combine with multiple morphemes to generate word forms. For
the purpose of analysis of such inflectionally rich languages, the root and the
morphemes of each word has to be identified.

The global scenario has influenced the morphological analysis of Tamil. In
the last decade, computational morphology has advanced further towards real-
life applications than most other subfields of natural language processing. To
build a syntactic representation of the input sentence, a parser must map each
word in the text to some canonical representation and recognize its
morphological properties. The combination of a surface form and its analysis as a
canonical form and inflection is called a lemma. The main problems are:

1. morphological alternations: the same morpheme may be realized in
different ways depending on the context.

2. morphotactics: stems, affixes, and parts of compounds do not combine

freely, a morphological analyzer needs to know what arrangements are
valid.

A popular approach to 1 is the cut-and-paste method. The canonical form

is derived by removing and adding letters to the end of a string. The use of finite-
state technology for automatic recognition and generation of word forms was
introduced in the early 1980s. It is based on the observation that rules for
morphological alternations can be implemented by finite-state transducers. It was
also widely recognized that possible combinations of stems and affixes can be
encoded as a finite-state network. An automaton containing inflected word forms
can be upgraded to a morphological analyzer, for example, by adding a code to

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 3

the end of the inflected form that triggers some predefined cut-and-paste
operation to produce the lemma. Instead of cutting and pasting it at runtime, the
entire lemma can be computed in advance and stored as a finite-state transducer
whose arcs are labeled by a pair of forms.

The transducer format has the advantage that it can be used for
generation as well as analysis. The number of nodes in this type of network is
small, but the number of arc-label pairs is very large as there is one symbol for
each morpheme-allomorph pair. A more optimal lexical transducer can be
developed by constructing a finite-state network of lexical forms, augmented with
inflectional tags, and composing it with a set of rule transducers.

Lexical transducers can be constructed from descriptions containing any

number of levels. This facilitates the description of phenomena that are difficult to
describe within the constraints of the two-level model. Because lexical
transducers are bidirectional, they are generally non-deterministic in both
directions. If a system is only to be used for analysis, a simple finite-state
network derived just for that purpose may be faster to operate.

The following is the list of computational morphological analysis attempted
and/or implemented for Tamil:

1. Rajendran’s Morphological Analyzer for Tamil: The first step towards a
preparation of morphological analyzer for Tamil was initiated by anusaraka group
of researchers under whose guidance Rajendran, Tamil University prepared a
morphological analyzer for Tamil for Translating Tamil into Hindi at the word
level.

2. Genesan’s Morphological Analyzer for Tamil: Ganesan developed a
morphological analyzer for Tamil to analyze CIIL corpus. He exploits
phonological and morphophonemic rules and takes into account morphotactic
constraints of Tamil in building morphological analyzer for Tamil. Recently he has
built an improved and efficient morphological parser.

3. Kapilan’s Morphological Analyzer for Tamil Verbal Forms: Kapilan
prepared a morphological analyzer for verbal forms in Tamil.

4. Deivasundaram’s Morphological parser: Deivasundarm has prepared a
morphological analyzer for Tamil for his Tamil Word Processor. He too makes
use of phonological and morphophonemic rules and morphotnatic constraints for
developing his parser.

5. AUKBC Morphological Parser for Tamil: AUKBC NLP team under the
supervision of Rajendran prepared a Morphological parser for Tamil. The API
Processor of AUKBC makes use of the finite state machinery like PCKimmo. It
parses, but does not generate.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 4

6. Vishnavi’s Morphological Generator for Tamil: Vaishnavi researched for
her M.Phil. dissertation on morphological generator for Tamil. The Vaishanvi’s
morphological generator implements the item and process model of linguistic
description. The generator works by the synthesis method of PCKimmo.

7. Ramasamy’s Morphological Generator for Tamil: Ramasamy has prepared
a morphological generator for Tamil for MPhil dissertation.

8. Winston Cruz’s Parsing and Generation of Tamil Verbs: Winston Cruz
makes use of GSmorph method for parsing Tamil verbs. GSmorph too does
morphotactics by indexing. The algorithm simply looks up two files to see if the
indices match or not. The processor generates as many forms as it parses and
uses only two files.

9. Vishnavi’s Morphological Analyzer for Tamil: Vaishnavi again researched
for her Ph.D. dissertation on the preparation of Morphological Analyzer for Tamil.
She proposes a hybrid model for Tamil. It finds its theoretical basis in a blend of
IA and IP models of morphology. It constitutes an in-built lexicon and involves a
decomposition of words in terms of morphemes within the model to realize
surface well-formed words-forms. The functioning can be described as defining a
transformation depending on the morphemic nature of the word stem. The
analysis involves a scanning of the string from the right to left periphery scanning
each suffix at a time stripping it, and reconstructing the rest of the word with the
aid of phonological and mophophonemic ruels exemplified in each instance. This
goes on till the string is exhausted. For the sake of comparison she implements
AMPLE and KIMMO models. She also evaluates TAGTAMIL, API Analyzer, and
GSMorph. She concludes that Hybrid model is more efficient that the rest of the
models.

10. Dhurai Pandi’s Morphological Generator and Parsing Engine for Tamil
Verb Forms: It is a full-fledged morphological generator and a parsing engine on
verb patterns in modern Tamil.

11. RCILTS-T’s Morphological analyzer for Tamil: Resource Centre for Indian
Language Technological Solutions-Tamil has prepared a morphological analyzer
for Tamil. It is named as atcharam. Atcharam takes a derived word as input and
separate into root word and associated morphemes. It uses a dictionary of 20000
root words based on fifteen categories. It has two modules - noun and verb
analyzer based on 125 rules. It uses heuristic rules to deal with ambiguities. It
can handle verb and noun inflections.

12. RCILTS-T’s Morphological generator for Tamil: Resource Centre for
Indian Language Technological Solutions-Tamil has prepared a morphological
generator also for Tamil. It is named as atchayam. Atchayam generates words
when Tamil morphs are given as input. It has two major modules – noun and

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 5

verb generators. The noun section handles suffixes like plural markers, oblique
form, case markers and postpositions. The verb section takes tense and PNG
makers, relative and verbal participle suffixes, and auxiliary verbs. It uses sandhi
rules and125 morphological rules. It handles adjectives and adverbs. It has word
and sentence generator interfaces.

Morphological Disambiguation in Tamil

Word-forms are often ambiguous. Alternate analyses occur because of
categorial homonymy, accidental clashes created by morphological alternations,
multiple functions of affixes, or uncertainty about suffix and word boundaries. The
sentential context normally decides which analysis is appropriate. This is called
disambiguation. There are two basic approaches to disambiguation: rule-based
and probabilistic. Rule-based taggers typically leave some of the ambiguities
unresolved but make very few errors; statistical taggers generally provide a fully
disambiguated output but they have a higher error rate. Probabilistic (stochastic)
methods for morphological disambiguation have been dominant since the early
1980s. Standard statistical methods can be applied to provide a fully
disambiguated output.

Baskaran and Vijay-Shankar who have studies ‘Influence of Morphology in
Word Sense Disambiguation for Tamil’ concludes in the following fashion: “The
experiments conducted using both supervised and semi-supervised approaches
clearly indicate that morphological inflections indeed affect the system
performance, thus strongly suggesting need for morphology in the sense
disambiguation of Tamil in particular and other inflectional languages in general.”

Shallow Parsing in Tamil

We use the term shallow syntax as a generic term for analyses that are
less complete than the output from a conventional parser. The output from a
shallow analysis is not a phrase-structure tree. A shallow analyzer may identify
some phrasal constituents, such as noun phrases, without indicating their internal
structure and their function in the sentence.

Another type of shallow analysis identifies the functional role of some of

the words, such as the main verb, and its direct arguments. Systems for shallow
parsing normally work on top of morphological analysis and disambiguation. The
basic purpose is to infer as much syntactic structure as possible from the
lemmata, morphological information, and word order configuration at hand.
Typically, shallow parsing aims at detecting phrases and basic head/modifier
relations.

A shared concern of many shallow parsers is the application to large text

corpora. Frequently partial analyses are allowed if the parser is not potent
enough to resolve all problems. Church (1988) has designed a stochastic

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 6

program for locating simple noun phrases which are identified by inserting
appropriate brackets, [...].

Abney (1991) is credited with being the first to argue for the relevance of
shallow parsing, both from the point of view of psycholinguistic evidence and
from the point of view of practical applications. His own approach used hand-
crafted cascaded Finite State Transducers to get at a shallow parse. Typical
modules within a shallow parser architecture include the following:

1. Part-of-Speech Tagging. Given a word and its context, decide what the

correct morphosyntactic class of that word is (noun, verb, etc.). POS
tagging is a well-understood problem in NLP, to which machine
learning approaches are routinely applied.

2. Chunking. Given the words and their morphosyntactic class, decide

which words can be grouped as chunks (noun phrases, verb phrases,
complete clauses, etc.)

3. Relation Finding. Given the chunks in a sentence, decide which

relations they have with the main verb (subject, object, location, etc.).

Because shallow parsers have to deal with natural languages in their entirety,
they are large, and frequently contain thousands of rules (or rule analogues).
These rule sets also tend to be largely `soft', in that exceptions abound. Building
shallow parsers is therefore a labour-intensive task. Unsurprisingly, shallow
parsers are usually automatically built, using techniques originating within the
machine learning (or statistical) community.

Parts of Speech Tagging in Tamil

 Parts of speech tagging scheme tags a word with its parts of speech in a
sentence. It is done in three stages: pre-editing, automatic tag assignment, and
manual post-editing. In pre-editing, corpus is converted to a suitable format to
assign a part of speech tag to each word or word combination. Because of
orthogrpahic similarity one word may have several possible POS tags. After initial
assignment of possible POS, words are manually corrected to disambiguate
words in texts.

1. Vasu Ranganathan’s Tagtamil: Tagtamil by Vasu Ranganathan is based on
Lexical phonological approach. Tagtamil does morphotactics of morphological
processing of verbs by using index method. Tagtamil does both tagging and
generation.

2. Ganesan’s POS tagger: Ganesan has prepared a POS tagger for Tamil. His
tagger works well in CIIL Corpus. Its efficiency in other corpora has to be tested.
He has a rich tagset for Tamil. He tagged a portion of CIIL corpus by using a
dictionary as well as a morphological analyzer. He corrected it manually and

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 7

trained the rest of the corpus with it. The taggs are added morpheme by
morpheme.

vandtavan: va_IV_ ndt_PT_avan_3PMS
 pukkaLai : puu_N_PL_AC

3. kathambam of RCILTS-Tamil: Kathambam attaches parts of speech tags to
the words of a given Tamil document. It uses heuristic rules based on Tamil
linguistics for tagging and does not use either the dictionary or the morphological
analyzer. It gives 80% efficiency for large documents. It uses 12 heuristic rules.
It identifies the tags based on PNG, tense and case markers. Standalone words
are checked with the lists stored in the tagger. It uses ‘Fill in rule’ to tag
‘unknown words. It uses bigram and identifies the unknown word using the
previous word category.

Chunking in Tamil

 Basically a chunker divides a sentence into its major-non-overlapping
phrases and attaches a label to each. Chunker differ in terms of their precise
output and the way in which a chunk is defined. Many do more than just simple
chunking. Others just find NPs. Chunking falls between tagging (which is
feasible but sometimes of limited use) and full parsing (which more useful but is
difficult on unrestricted text and may result in massive ambiguity. The structure of
individual chunks is fairly easy to describe, while relations between chunks are
harder and more dependent on individual lexical properties. So chunking is a
compromise between the currently available and the ideal processing output.
Chunkers tokenise and tag the sentence. Most chunkers simply use the
information in tags, but others look at actual words.

Noun Phrase Chunking in Tamil

Noun phrase chunking deals with extracting the noun phrases from a
sentence. While NP chunking is much simpler than parsing, it is still a
challenging task to build an accurate and very efficient NP chunker. The
importance of NP chunking derives from the fact that it is used in many
applications.

Noun phrases can be used as a pre-processing tool before parsing the
text. Due to the high ambiguity of the natural language exact parsing of the text
may become very complex. In these cases chunking can be used as a pre-
processing tool to partially resolve these ambiguities. Noun phrases can be used
in Information Retrieval systems. In this application the chunking can be used to
retrieve the data's from the documents depending on the chunks rather than the
words. In particular nouns and noun phrases are more useful for retrieval and
extraction purposes.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 8

Most of the recent work on machine translation use texts in two languages
(parallel corpora) to derive useful transfer patterns. Noun phrases also have
applications in aligning of text in parallel corpora. The sentences in the parallel
corpora can be aligned by using the chunk information and by relating the chunks
in the source and the target language. This can be done lot more easily than
doing word alignment between the texts of the two languages. Further noun
phrases that are chunked can also be used in other applications where in depth
parsing of the data is not necessary.

1. AUKBCRC’s Noun Phrase Chunker for Tamil : The approach is a rule
based one. In this method initially a corpus is taken and it is divided into two or
more sets. One of these divided sets is used as the training data. The training
data set is taken and manually chunked for noun phrases, thus evolving rules
that can be applied to separate the noun phrases in a sentence. These rules
serve as the base for chunking. The chunker program uses these rules and
chunks the test data. The coverage of these rules is tested with this test data set.
Precision and recall are calculated for this and the result is analyzed to check, if
more rules are needed to improve the coverage of the system. If more rules are
needed then additional rules are added and the same process as mentioned
above is repeated to check for increase in the precision and recall of the system.
The system is then tested for various other applications.

2. vaanavil of RCILTS-Tamil: vaanavil identifies the syntactic constituents of a
Tamil sentence. It ouputs the parsed tree in a list form. It tackles both simple and
complex sentences. Simple sentences can have a verb, many noun phrase,
simple adverbs and adjectives. Complex sentences can have multiple adjectival,
adverbial and noun clausal forms. In the case of sentences with multiple
clauses, vaanavil syntactically groups the clauses based on the cue words and
phrases. It makes of phrase structure grammar. It uses look-ahead to handle
free word order. It handles ambiguity using 15 heuristic rules. It uses the
morphological analyzer to obtain the root word.

Grammar Formalisms and syntactic parsing in Tamil

For processing a natural language certain formalisms are required. The
grammatical models proposed by linguists, otherwise called as grammatical
formalism try to capture the phonological, grammatical and semantic organization
of natural language partially or fully. Grammatical formalisms are written with the
purpose of comprehending the units and patterns found in all the levels of
language. Computer scientists take the grammatical formalisms, modify them
suitably for creating data-base procedures for machines so to make the
machines process, recognize and produce natural language units and structures.
Such a computational description is called as computational formalism.

 The free word order feature of Tamil makes parsing a challenging task.
There is a need to associate and link components that are not always adjacent to

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 9

each other. A number of fomalisms have been made use for parsing in Tamil
The widely used one is Context Free Grammar formalism coupled with finite
state automata. Phrase Structure grammars have been designed on fixed word
order languages like English.

Tamil is a variable word order language. In a sentence features of words
or grammatical constituents can be tightly coupled or loosely coupled.

In fixed word order languages features like number and gender in the case
of nouns and tense and number in the case of verbs are tightly coupled
attachments to the respective syntactic category. The other linkages are loosely
coupled and indicated by word proximity. In Tamil in addition to features like
number, gender and tense, case attachments of nouns and aspect and mood of
verbs are tightly coupled through inflectional attachments and do not need word
proximity to indicate dependency. So Tamil requires a different kind of
grammatical formalism which rely on dependency rather than proximity. Tamil
rely more on morphology than syntax in indicating grammatical functions.

In the global arena a very advanced and wide-spread class of linguistic
formalisms are the so-called constraint-based grammar formalisms which are
also often subsumed under the term unification grammars. They go beyond
many earlier representation languages in that they have a clean denotational
semantics that permits the encoding of grammatical knowledge independent from
any specific processing algorithm. These formalisms are currently used in a large
number of systems.

Among the most used, constraint-based grammar models are Functional

Unification Grammar (FUG), Head-Driven Phrase-Structure Grammar (HPSG),
Lexical Functional Grammar (LFG), Categorical Unification Grammar (CUG), and
Tree Adjunction Grammar (TAG). For these or similar grammar models, powerful
formalisms have been designed and implemented that are usually employed for
both grammar development and linguistic processing. Almost all ongoing
European Union-funded language technology projects involving grammar
development have adopted unification grammar formalisms.

1. Baskaran’s Finite-state Machine for Syntactic Parsing: Finite-state
Automata is one of the important techniques for parsing at all the level of a
language structure. On experimental basis Baskaran (1984) has attempted a
Finite-State-Machine for parsing sentences in Tamil.

2. Kumara Shanmugam’s Syntactic Parser for Tamil: Keeping the
characteristics of Tamil in mind Kumara Shanmugam (2004) has prepared a
parser for Tamil. The parser he has designed carry out a complete morphological
analysis of words of the sentences at the first level in order to help in
dependency determination.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 10

The parser divides the sentences into two basic constituents noun part
and verb part. In other words he has a one level syntax tree. Since Tamil has
variable word order it is possible that the noun or verb parts could be
discontinuous.

Thus the parser uses the morphological analyzer to determine tightly

coupled features which help in classification of the words. Unclassified words are
classified based on heuristics. Dependencies between noun head and verb head
and their respective modifiers are tackled with the help of dependency rules.
Sentence patterns are then used to analyze the sentence. The selection of the
sentence pattern depends on information provided by the morphological
analyzer. The addition of rules for semantic dependencies can enhance the
performance of the parser.

4. Shanmugam’s Parsing Techniques: Shanmugam while proposing a

program for syntactic parsing in Tamil makes the following comments:
“Structural description of the units of a language can be provided by
the grammar of language, making use of a principle called ‘Projection
Principle’. According to this principle, as in transformational
grammatical treatise, the structure of a sentence or phrase can be
projected or plotted from the lexical specification of the head of the
phrase or sentence. That projected structure will be abstract structure
which will be modified with due substitution of appropriate lexical items.

Shanmugam (2002) advocates for minimalist program for Tamil parsing.

All grammatical formalisms identify lexicon and certain procedures for creating
and manipulating grammatical structures. Minimalist program which is a
grammatical model and an extension of GB framework was proposed by
Chomsky to expose the grammatical patterns found in languages. Some of his
MPhil and Ph.D. students have worked for their dissertation on Context Free
Grammar Formalism, Transformational Generative Grammar Formalism,
Projection Principle, and Minimalist Program and prepared syntactic parser
models for Tamil based on the formalism they have chosen.

4. RCILTS-Tamil syntactic parser: The parser handles simple and complex
sentences with multiple nouns, adjective and adverb clauses. Handling of
conjunction has been tackled to a limited extent. The addition of rules for
semantic dependencies can enhance the performance of the parser. The
seems to parse sentences in terms of clauses such as noun clauses, verb
clauses, adjective clauses and adverbial clauses. The clauses have been
parsed into categories.

Future Directions

 The issue that dominates current work in parsing and language modeling
is to design parsers and evaluation functions with high coverage and precision

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 11

with respect to naturally occurring linguistic material (for example, news, stories,
spontaneous speech interactions). Simple high-coverage methods such as n-
gram models miss the higher-order regularities required for better prediction and
reliable identification of meaningful relationships, while complex hand-built
grammars often lack coverage of the tail of individually rare but collectively
frequent sentence structures. Automated methods for grammar and evaluation
function acquisition appear to be the only practical way to create accurate
parsers with much better cover. The challenge is to discover how to use
linguistic knowledge to constrain that acquisition process.

REFERENCES

Arulmozhi, S. 1998. Aspect of Inflectional Morphology – A Computational

Approach. Ph.D. dissertation, University of Hyderabad.

Anandan P, Rajani Parthasarathy, Geetha, T.V. 2001. “Morphological analyzer

for Tamil”. ICON 2002, RCILTS-Tamil Anna University, Chennai.
Anandan, P, Rajani Parthasarathy, Geetha, T.V. 2001. “Morphological Generator

for Tamil” in Tamil Internet 2001 Conference Proceedings, Malaysia.

Arulmozhi, P and Sobha, L. 2006. A Hybrid POS tagger for a Relatively Free

Word Order Language. In Proceedings of the First National Symposium on
Modeling and Shallow Parsing of Indian Languages, pages 79-85.

Arulmozi, S. 1998. Aspects of Inflectional Morphology–A Computational

Approach. Ph.D dissertation submitted to University of Hyderabad.

Brochures on ‘Language Technology Products’ of the Resource Center for

Indian Language Technology Solutions – Tamil, Chennai.

Balakrishnan, R. 2002. Morphology and Tamil Computing. Paper read in

International Seminar on Tamil Computing, February 27, 28, 2002, Madras
University.

cevveel kapilan, 1994. KaNippoRi vazhi tamizh vanikaLin prauppaayvu. Chennai:

puttaakka mozhiyial kazhakam.

cupasri, je. 2005. tamizh vinaic coRkaLin urupaniayal aayvi. aayviyal niRainjar

aayveeTu, mozhiyiyal tuRai, tamizhp palkalaikkazhakam, tanjaavuur.

Deivasundaram, N. and Gopal, A. 2003. ‘Computational Morphology of Tamil’ In

B. Ramakrishna Reddy (ed.) Word Structure in Dravidian, Kuppam: Dravidian
University, 406-410.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 12

Duraipandi, R. “The Mophological Generator and Parsing Engines of Tamil Verb
forms”, in Tamil Internet 2006.Chennai: Asian Printers.

Ganesan, M. 1994. “Functions of Morphological Analyzer Developed at CIIL,

Mysore”, in Harikumar Basi (ed.) Automatic Translation (seminar
proceedings), Thiruvanthapuram: ISDL.

Ganesan, M. 2003. “Computational Morphology of Tamil”, in B. Ramakrishna

Reddy (ed.) Word Structure in Dravidian, Kuppam: Dravidian University, 399-
405.

Ganesan, M and Francis Ekka. 1994. “Morphological Analyzer for Indian

Languages”, in Agarwarl Pani (eds) Information Technology Applications in
Language, Script and Speech. New Delhi:BPB Publication.

iraamacundtari, 2005. tamizh peyarc coRkaLin urupaniayal aayvi. aayviyal

niRainjar aayveeTu, mozhiyiyal tuRai, tamizhp palkalaikkazhakam, tanjaavuur.
Kumara Shanmugam, B. 2004. Parse representation of Tamil syntax. MS Thesis,

submitted to Anna University, Chennai.

Language Analysis and Understading. In Survey of the State of Art in Human
Language Technology. (A downloaded script)

Rajendran S, Arulmozi S, Ramesh Kumar S, & Viswanathan S. 2003.

Computational Morpohology of Verbal Complex In B. Ramakrishna Reddy
(ed.) Word Structure in Dravidian, Kuppam: Dravidian University, 376-398.

Ramaswamy, V. 2000. Morphological Generator for Tamil. Unpublished M.Phil

dissertation. University of Hyderabad.

Ranganathan, V. 1997. “A Lexical Phonology Approach to Processing Tamil

Word by Computer”, International Journal of Dravidian Linguistics 26.1.

Shanmugam, C. 2001. “Computer Analysis of Simple Sentence in Tamil”, Paper

read in UGC-SAP National Seminar on Computational Linguistics and
Dravidian Languages, 22-24 February, 2001, CAS in Linguistics, Annamalai
University, Annamalainagar.

---------2002. “Grammar and Parser: A Program for Syntactic Parsing in Tamil”,

International Seminar on Tamil Computing, 27-28 February and March 1,
2002, University of Madras, Chennai.

-----------“Minimalist Program for Tamil Parsing”.

Sivashanmugam, C. 2000. “A Model for Computer analysis of Verbs in Tamil”, in

Working Papers in Linguistics, Department of Linguistics, Bharathiyar
University, Coimbatore.

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 13

--------------2002. Morphological Processor for Negative Constructions in Tamil”,

Indian Conference on Natural Language Processing, Anna University,
Chennai.

Sobha, L and Vijay Sundar Ram. 2006. “Noun Phrase Chunker for Tamil

Language”, in Proceedings of the First National Symposium on Modeling and
Shallow Paring of Indian Languages, pages 194-198.

Vaishnavi Ramaswamy. 2000. A Morphological Generator for Tamil. M.Phil

Dissertaion Subbmitted to University of Hyderabad.

Vaishnavi Ramaswamy. 2003. A Morphological Analyzer for Tamil. Ph.D

Dissertaion Subbmitted to University of Hyderabad.

Viswanathan, S., Rameshkumar, S. Kumara Shanmugam, B. Arulmozhi. S. &

Vijay Shnakar, K.2003. A Tamil Morphological Analyzer. In Rajeev Sangal,
S.M. Bendre & Udaya Narayana Sigh (eds.), Recent Advances in Natural
Language Processing. Mysore: CIIL.

Winston Cruz, S. 2002. Parsing and Generation of Tamil Verbs in GSMorph.

M.Phil. dissertation submitted to the University of Hyderabad.

S. Rajendran, Ph.D.
Department of Linguistics
Tamil University
Thanjavur 613 005
Tamilnadu, India

raj_ushush@ yahoo.com

LANGUAGE IN INDIA www.languageinindia.com Vol 6 : 8 August, 2006 Parsing in Tamil ... S. Rajendran 14

